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Table I. Oxygen Exchange during Benzamide Hydrolysis 
in 5.9% H2SO4 at 85.0° 

Run 1 Run 2 

121/123^ 

0.1005 
0.1030 
0.1049 
0.1071 

% 18Oc 

90.87 
90.66 
90.51 
90.33 

Time, 
min0 

0 
150 
312 
478 

121/123* 

0.1013 
0.1033 
0.1057 
0.1082 

% 18O^ 

90.80 
90.64 
90.44 
90.24 

fcEd= 1.25 X 1O-5 min-1 /fcEd = 1.30 X lO^min"1 

a For hydrolysis, fcH = 4.09 X 10 "3 min"1, Iy1 = 169 min (C. R. 
Smith and K. Yates,/. Am. Chem. Soc, 93, 6578 (1971). b Ratio 
of peak intensities at m/e 121 and 123, measured on an AEI MS-902, 
equipped with a Vacuumetrics ratiometer. These values are the 
average of 30—40 determinations; standard deviations range from 
0.00025 to 0.00035. c (IJr)I(I + (1/V)),S r = 121/123.<* Slope of the 
plot of In (% 18O - 0.2) vs. time. 

Table II. Control Experiment Demonstrating Reproducibility 
of Mass Spectral Analysis 

% labeled 
benzamide0 

100 
99.86 
99.73 
99.45 

121/123* 

0.1010 
0.1030 
0.1041 
0.1069 

% l s Oc 

90.83 
90.66 
90.57 
90.34 

% labeled 
benzamide, calcd 

(100) 
99.81 
99.71 
99.46 

a Samples of 18O enriched benzamide diluted with small amounts 
of unlabeled material. *.cSee footnotes b and c in Table I. 

dominantly in an N-protonated form, so that the best leav­
ing group will be amine and not water. In addition an anal­
ogy exists with the hydrolysis of imidate esters where a sim­
ilar tetrahedral intermediate is formed and also decomposes 
in acid mainly by expulsion of amine.10 

In conclusion the results obtained here provide compel­
ling evidence for the intermediacy of tetrahedral species in 
the acid-catalyzed hydrolysis of benzamide, and there ap­
pears to be no reason to assign this reaction to a mechanis­
tic category different from that of other hydrolysis reac­
tions of carboxylic acid derivatives. 
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The Pyridine Route to Optically Active Estrone 
and 19-Norsteroids 

Sir: 

The use of the bis annelating agent 1 has been previously 
described.1 '3 System 2 may be elaborated after reaction of 
1 with a nucleophilic equivalent of R. Such systems are con-
vertable by reductive hydrolytic cyclization into cyclohexe-
nones such as 3. Alternatively, compound 4 may be em­
ployed as a tris annelating agent.4a For instance, reaction of 
4 with 55a under acidic catalysis gives racemic hydrinden-
edione (6a). Of course, the use of 6a in a total synthesis of 
estrone would require recourse to resolution if optically ac­
tive product is to be produced.5b 

Alternatively compound 74a can be produced in high 
yield4b from the reaction of 4 and 5 in ethyl acetate contain­
ing triethylamine. The prochiral nature of 7 lends itself to 
the possibility of asymmetrically induced aldolization under 
the influence of L-amino acids. This highly original concept 
had been demonstrated and used with great success by Ha-
jo s 6 a b and Eder7 in the synthesis of the parent hydrinden-
edione 9 (R = H) from the oxobutyl system 8 (R = H). In 
pursuing this approach, we were not unmindful of previous 
reports,7 which indicated a sharp deterioration of asymmet­
ric specificity in the transformation of 8 — 9, as R becomes 
alkyl. 

We report the total synthesis of optically active estrone 
and the commercially important 19-norsteroids involving, 
as a key step, the conversion of prochiral 7—* optically ac­
tive 6 with high asymmetric specificity via an aromatic 
amino acid. 

The sign and value of [a] D for the pure 13S antipode, 6b, 
were obtained as follows. Reduction of the pure 13S enan-
tiomer, 9,6,7 with sodium borohydride gave 10. The latter 
was converted to 11 [a] D +94.6° (benzene, c 1%) accord­
ing to Hajos.8 Picolyethylation of 11 (1 equiv of enone 1; 1 
equiv of potassium tert-amyl oxide-ferr-amyl alcohol; 2 
equiv of 1; reflux 12 hr) followed by cleavage of the tert-
butyl ether (HCl -E tOH-H 2 O; reflux 45 min) gave 12b 
[a] D +28.4° (benzene, c 1%), in 36% yield. Jones oxidation 
of 12b gave optically pure 6b [a]D +202.0° (benzene, c 
1%). 

Attempted cyclization of 7 under the influence of L-pro-
line using the conditions of either Hajos6 or Eder7 gave dis­
appointing results in terms of optical specificity. Fortunate­
ly, it was found that reaction of 7 with L-phenylalanine 
under conditions similar to those of Eder7 (1 equiv of trione; 
1.2 equiv of amino acid; 0.5 equiv of HClOa in acetonitrile 
2.7 ml/mmol of trione; reflux 40 hr) gave 6c [a]D +173.6° 
(i.e., 86% optical purity) in 82% chemical yield from 4.9 We 
now describe the conversion of 6c into estrone and 19-nor-
steroids. Separations of the c series (86% optically pure) 
into the optically pure (b compounds) and largely racemic 
(a compounds) was achieved with nearly perfect efficiency 
in one recrystallization at the tetracyclic stages (vide infra). 
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X^P 
6d X=O racemate 

b X=O M 0 = +202.0° 

c X=O M D = + I73.6° 

12a X=£0H; « H racemate 

b X= £ 0H ( « H M 0 =+28 .4 ° 

C X=flOH;°<H C=D0=+24.4° 

9 X=O; R = H 

IO X=^OH1WH; R=H 

Il X=JSOC(CHj)3, 0(H; R = H 

Selective reduction of 6c with sodium borohydride-etha-
nol gave 12c10a [a]D 24.4° (c 1% benzene; i.e., 86% optical­
ly pure) in 88% yield. Compound 12c was reduced under 
conditions (90% EtOH; 0.1 equiv of HClO4; 3 atm of 
Pd-C) similar to those of McKenzie,"-12 and the resultant 
product was treated with ethylene glycol-toluene-p-TsOH, 
under reflux for 36 hr. Chromatography on silica gel13 gave 
compounds 1310 and 1410 in yields of 45 and 17%, respec­
tively. Unfortunately, the hydrogenolysis product, 1510a was 
also obtained in 21% yield. While the level of stereoselectiv­
ity (trans:cis = 2.6:1) is in keeping with expectations for 
catalytic reduction of this type of system,11^14"16 the serious 
competition from hydrogenolysis does not have precedent. 

Reductive hydrolysis and cyclization ((i) 1.1 equiv of Na-
NH3-EtOH-Et2O); (ii) NaOH-EtOH-H2O, room tem­
perature, 2,5 hr) of compound 13 followed by deketaliza-
tion during acid work-up, gave crude 1610a which served as 
a common intermediate for estrone (18b) and 19-nor-
steroids (19b, 20, and 21). Jones oxidation of 16 was fol­
lowed by cyclodehydration (/7-TsOH; glacial HOAc, 100°, 
1.5 hr). The crude, dienedione 1710 was isomerized with 
acetyl bromide-acetic acid anhydride2-17 and the phenolic 
(estrone) acetate hydrolyzed (potassium carbonate-aque­
ous methanol). Chromatography gave a 48% yield (from 
13) of crystalline estrone (18c): [a]D +138.4 (c 1% diox-
ane); authentic sample of 18b, [a]D +161.0° (same condi­
tions). A single recrystallization (Et2O-MeOH) gave a 39% 
yield (from 12) of totally synthetic estrone (18b): [a]D 
+ 160.0°, mp 254-255°, authentic sample 255-256° (unde­
pressed). From the mother liquors there was obtained a 9% 
yield of virtually racemic estrone (18a) [a]D +7.25°. The 
yield of optically pure estrone from monocyclic Sis 13%. 

In a separate series, compound 16 was directly cyclized 
(p-TsOH, glacial HOAc) and the tetracyclic acetate thus 
produced was cleaved (KOH-MeOH). Chromatography 
afforded a 68% yield (from 12) of crystalline hydroxydi-
enone (19c):10a [a]D -249.5° (c 1%, CHCl3) lit.18 [a]D for 
19b —290.2° (same conditions). One recrystallization 
(Et2O-MeOH) separated 19c10 into a 56% yield (from 12) 
of optically pure 19b [a]D -290.0°; mp 188-190°, lit.18 

187-189°) and a 12% yield of virtually racemic 19a ( [ « ] D 
— 10.7°). The yield of optically pure 19b which has itself 
been reported1* to possess powerful antifertility activity, is 
18% from S. Compound 18b was converted19 (83%) by the 

action of sodium ammonia-ethanol into 20, the well-known 
A5-10 tautomer of 19-nortestosterone20 (21). The conversion 
of 20 — 21 has been achieved21 (MeOH-HCl) in virtually 
quantitative yield. 

13 R==(H 

14 R = ^H 
16 X=£OH; O1 H 

18a racemate 

b optically pure 

e 86% optically pure 

17 X=O 

19a X=/OH; «H racemate 

b X=^OH; »,H optically pure 

C X=^OH; qH 86% optically pure 

OH 

20 

In an attempt to obtain analytically pure trione 7, virtu­
ally pure material was submitted to silica gel chromatogra­
phy. Rather than pure 7, there was obtained a 48% yield of 
the racemic /3-aldol 22, mp 132-1340.10 It is interesting to 
note that reaction of 22 with L-phenylalanine (under the 
same conditions used for conversion of 7 —• 6c) gave 6a. It 
can be concluded that /3-aldol 22 is not in equilibrium with 
trione 7 since, to the extent that trione 7 were produced 
under the reaction conditions, it would be diverted by the 
L-phenylalanine to give 6c. 

l-Ptl.% , 6a 

The above reactions constitute a simple route to the opti­
cally active, versatile, dienone 19 and to a variety of biologi­
cally important steroids.20 Were the inefficiency of the con­
version of 12 —• 13 to be overcome, this steroid synthesis 
could well compete with any of the existing processes2223 in 
terms of availability of starting materials, simplicity of re­
agents, ease of operations and optical specificity.24 
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Siloxene as a Unique Catalyst for Structural 
Isomerization of n-Butene 

Sir: 

Siloxene (Si603H6)„ is a unique solid with high surface 
area and contains reactive S i -H groups.U 4 The reactivity of 
the Si-H groups of siloxene toward various substances has 
been studied in some detail,2-4 but its potentiality as a het­
erogeneous catalyst has never been explored. We have used 

siloxene as the catalyst for isomerization of /i-butenes and 
found it has a unique characteristic for the reaction. It cata­
lyzes the cis-trans isomerization of butene-2, but it has no 
activity for double bond migration, i.e., 1-butene to 2-bu-
tene or vice versa. 

Siloxene was prepared by the reaction of calcium silicide 
with hydrochloric acid and water in 1-propanol essentially 
according to the method described by Kautsky and Pfleg-
er.2 Calcium silicide (2.5 g) was added to the mixture of 
300 ml of 1-propanol, 55 ml of water, and 10 ml of concen­
trated hydrochloric acid at 0°, and the system was contin­
uously agitated in the dark under a nitrogen atmosphere. 
After 50-70 hr, the product was filtered under nitrogen and 
washed with 1-propanol and then with ethyl ether at 0°. 
The solid thus shows infrared bands due to Si-H stretching 
at 2120 and 2250 c m - 1 and has a surface area of 560 m2 /g. 
Siloxene was then transferred to a reaction vessel of 44 ml 
and evacuated at 200° for 5 hr. This treatment caused a 
slight loss in the intensity of the 2120-cm - 1 band. Then, the 
system was maintained at the reaction temperature and bu­
tene was introduced. After 1 hr, the product distribution 
was analyzed by gas chromatography. The results are sum­
marized in Table I. It is clearly seen that siloxene has a cat­
alytic activity for cis-trans isomerization, but no activity for 
double bond migration of butenes. The presence of hydro­
gen in the system does not alter the situation. 

In the case of catalysis by metals or metal oxides, it is the 
usual observation that structural isomerization of butene-2 
accompanies double bond migration. The unusual nature of 
the catalysis by siloxene seems to be explained by a free 
radical mechanism. Actually, in gas phase catalysis, free 
radicals such as I ,5 6 RS,7 NO2,8 or N O 9 are known to pro­
mote structural isomerization without enhancing double 
bond migration. 

We propose the following mechanism for the structural 
isomerization of butene-2, assuming the presence of hydro­
gen deficient silicon sites. 

Si 
C = C 

C ^ 

Si 

/ l \ 

Si + 

/ l \ 
' \ 

C = C 
\ , 

Though the presence of th^ hydrogen deficient sites could 
not be confirmed easily, the t J lowing information was ob­
tained concerning the free radica' character of the siloxene. 
The solid exhibits an ESR signal ai ? = 2.004 with the spin 
number of 1.3 X 10 , 5 /g. Adsorptioi, of ciJ-butene-2 does 
not alter the ESR spectrum, indicating .hat the above equi­
librium much favors the side of the dissociated form at 
room temperature. However, after 50 mrnHg of sulfur diox­
ide, which has much higher electron affinity :han butene, 

Table I. Product Distribution of Butene over Siloxene 

Starting butene 

CIS-Butene-2 
c/s-Butene-2 
ci's-Butene-2 
ci's-Butene-2 
Butene-1 
Butene-1 

Temp (0C) 

80 
80 

100 
150 
100 
100 

Weight of 
catalyst 

(mg) 

88 
184 

17 
35 
77 
90 

pressure 
(mmHg) 

203 
146 
253 
106 
388 
257 

Hydrogen 
pressure 
(mmHg) 

0 
60 

128 
52 

0 
106 

cis-
C4H8-2 

83 
88 
71 
63 

0 
0 

Product distribution (%) 

trans-
C,H8-2 

17 
12 
28 
36 

0 
0 

C4H8-I 

0 
0 
1 
0 

100 
100 

C4H10 

0 
0 
0 
1 
0 
0 
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